Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons
نویسندگان
چکیده
Multicomponent chalcogenides, such as quasi-binary GeTe-Sb2Te3 alloys, are widely used in optical data storage media in the form of rewritable optical discs. Ge2Sb2Te5 (GST) in particular has proven to be one of the best-performing materials, whose reliability allows more than 10(6) write-erase cycles. Despite these industrial applications, the fundamental kinetics of rapid phase change in GST remain controversial, and active debate continues over the ultimate speed limit. Here we explore ultrafast structural transformation in a photoexcited GST superlattice, where GeTe and Sb2Te3 are spatially separated, using coherent phonon spectroscopy with pump-pump-probe sequences. By analysing the coherent phonon spectra in different time regions, complex structural dynamics upon excitation are observed in the GST superlattice (but not in GST alloys), which can be described as the mixing of Ge sites from two different coordination environments. Our results suggest the possible applicability of GST superlattices for ultrafast switching devices.
منابع مشابه
Femtosecond electron diffraction: direct probe of ultrafast structural dynamics in metal films.
Femtosecond electron diffraction is a rapidly advancing technique that holds a great promise for studying ultrafast structural dynamics in phase transitions, chemical reactions, and function of biological molecules at the atomic time and length scales. In this paper, we summarize our development of a tabletop femtosecond electron diffractometer. Using a delicate instrument design and careful ex...
متن کاملControlling phase change through ultrafast excitation of coherent phonons.
For semimetals such as bismuth, ultrafast femtosecond laser-excited coherent phonons at laser fluences below the damage threshold have been studied extensively. In this work, we investigate whether or not coherent phonon oscillations contribute to material's permanent damage, or can enhance or suppress such damage. We employed temporally-shaped femtosecond pulses to either enhance or cancel coh...
متن کاملCoherent optical and acoustic phonon generation correlated with the charge-ordering phase transition in La1−xCaxMnO3
We have observed coherent optical and acoustic phonon generation, which are strongly coupled to the charge-ordering sCOd transition in La1−xCaxMnO3 sx=0.5, 0.58d using femtosecond optical pump-probe spectroscopy. Coherent optical phonons, observed at low temperatures, disappear above the charge-ordering temperature TCO, while coherent acoustic phonons display the opposite behavior, disappearing...
متن کاملUltrafast Optical Excitation of a Combined Coherent-Squeezed Phonon field in SrTiO3.
We have simultaneously excited a coherent and a squeezed phonon field in SrTiO3 using femtosecond laser pulses and stimulated Raman scattering. The frequency of the coherent state (a 1.3 THz) is that of the A1g-component of the soft mode responsible for the cubic-tetragonal phase transformation at approximately 110 K. The squeezed field involves a continuum of transverse acoustic phonons domina...
متن کاملActivation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer
We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganiza...
متن کامل